On flaw tolerance of nacre: a theoretical study.
نویسندگان
چکیده
As a natural composite, nacre has an elegant staggered 'brick-and-mortar' microstructure consisting of mineral platelets glued by organic macromolecules, which endows the material with superior mechanical properties to achieve its biological functions. In this paper, a microstructure-based crack-bridging model is employed to investigate how the strength of nacre is affected by pre-existing structural defects. Our analysis demonstrates that owing to its special microstructure and the toughening effect of platelets, nacre has a superior flaw-tolerance feature. The maximal crack size that does not evidently reduce the tensile strength of nacre is up to tens of micrometres, about three orders higher than that of pure aragonite. Through dimensional analysis, a non-dimensional parameter is proposed to quantify the flaw-tolerance ability of nacreous materials in a wide range of structural parameters. This study provides us some inspirations for optimal design of advanced biomimetic composites.
منابع مشابه
Origin of flaw-tolerance in nacre
Over the past decades, our understanding of nacre's toughening origin has long stayed at the level of crack deflection along the biopolymer interface between aragonite platelets. It has been widely thought that the ceramic aragonite platelets in nacre invariably remain shielded from the propagating crack. Here we report an unexpected experimental observation that the propagating crack, surprisi...
متن کامل6th World Congresses of Structural and Multidisciplinary Optimization
Natural materials such as bone, tooth, and nacre are nano-composites of proteins and minerals with superior stiffness and toughness. At the most elementary structure level, bio-composites exhibit a generic microstructure consisting of staggered mineral bricks wrapped by soft protein in nanoscale. Why does nature design building blocks of biological materials in this form? Can we reproduce this ...
متن کاملEffects of interfacial friction on flaw tolerant adhesion between two dissimilar elastic solids
Flaw tolerance refers to a state in which a pre-existing crack-like flaw does not propagate even as the material is stretched to failure near its theoretical strength. Such an optimal scenario can be achieved when the characteristic length scale is reduced to below a critical value. So far, the critical conditions to achieve flaw tolerance have been discussed mostly for homogeneous materials or...
متن کاملToughening mechanisms in bioinspired multilayered materials.
Outstanding mechanical properties of biological multilayered materials are strongly influenced by nanoscale features in their structure. In this study, mechanical behaviour and toughening mechanisms of abalone nacre-inspired multilayered materials are explored. In nacre's structure, the organic matrix, pillars and the roughness of the aragonite platelets play important roles in its overall mech...
متن کاملNacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites.
Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 11 92 شماره
صفحات -
تاریخ انتشار 2014